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Abstract. The three-dimensional momentum density of annihilating electron–positron pairs has
been studied for a single Al–Li–Cu icosahedral quasicrystal. A direct Fourier transform method
is employed to reconstruct the three-dimensional momentum density from measurements of
the two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The
crystallographic anisotropy in the momentum density is observed to be very small. The
asphericity of the Fermi surface is not found explicitly within the experimental resolution in the
momentum space. The features of the three-dimensional electron–positron momentum density
agree with those obtained by means of Compton profile measurement. It is suggested that a
strong lattice–electron interaction at the Fermi level occurs in this icosahedral phase.

1. Introduction

Since the discovery of quasicrystals, many investigations have been made of their
crystallographic structures and electronic properties, experimentally and theoretically. One
of the most interesting features of quasicrystals is the lack of translational periodicity in the
atomic structures, which leads to the breakdown of the Bloch theorem and to the absence
of Brillouin zones. Therefore, no plane-wave functions propagate in quasicrystals. Yet a lot
of strong diffraction peaks are observed in the diffraction patterns of x-rays and electrons
for quasicrystals because of the existence of the quasi-periodicity, i.e. long-range bond-
orientational order with a non-crystallographic symmetry, such as the icosahedral point
group symmetry.

The quasicrystal Al6Li 4Cu1, which is onre of the (Al, Zn)49Mg33-type (Frank–Kasper-
type) icosahedral phases (i-phases), was discovered by Sainfortet al [1] and Ball and Lloyd
[2]. It has been found that this i-phase forms in thermal equilibrium [3–5]. This i-phase
is classified as a so-called s, p-electron quasicrystal because the valence band is dominated
by the s, p electrons at the Fermi level. The stability of the i-phases has been discussed
in terms of the number of valence electrons per atom(e/a) and other parameters by some
researchers [6, 7]. It was pointed out that these s, p-electron quasicrystals can form when
the value ofe/a is close to 2.0, and that these stable i-phases obey the relationQ ' 2kF ,
whereQ is the diameter of the quasi-Brillouin zone and 2kF is that of the Fermi surface
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[7]. The values ofQ are evaluated from the most intense diffraction peak in the x-ray
diffraction patterns, and the values of 2kF are calculated from the free-electron model.

The electronic properties of the quasicrystals have been reported in the literature [8–
10]. It has been found that the resistivities of the quasicrystals are quite high compared
to those of conventional crystalline alloys. The temperature dependence of the specific
heat in the Al–Li–Cu i-phase has indicated that the value of the density of states (DOS) at
the Fermi energy is much smaller than that of the free-electron-gas model [11–13]. This
result is consistent with the decrease of the peak height at the Fermi threshold in the soft-
x-ray spectra [11]. From the electronic specific heat measurements for many s, p-electron
quasicrystals and Frank–Kasper crystals, it is known that the ratio of the electronic specific
heat coefficient to the value from the corresponding free-electron model becomes very small
when the number of valence electrons per atom(e/a) approaches about 2.0 [14]. This result
suggests that a pseudo-gap appears at the Fermi level in the DOS when the integrated DOS
per atom approaches 2.0. It was argued that the stabilization of the Al–Li–Cu i-phase is
due to the gain of the band-structural energy when a pseudo-gap exists at the Fermi level
[14, 15]. On the basis of model calculations of the electronic structure of several crystalline
approximants of quasicrystals, Fujiwara and Yokokawa have suggested that the DOS in the
Al–Li–Cu quasicrystal probably has a pseudo-gap, and that the Fermi energy is located at
the minimum of the DOS. For the electron–electron interaction, the weak localization is
reported to be the cause of the temperature dependence of the resistivity and the magnetic
field dependence of the magnetoresistance in the Al–Li–Cu i-phase [13].

In a Compton scattering study of the Al–Li–Cu i-phase [17], it was found that the
number of valence electrons is much smaller than that for the electron gas model, and
that the momentum density of the valence electrons has a long tail. It was concluded that
the electronic structure of the i-phase is very different from that of the simple metal, and
that a large proportion of the contribution from higher-momentum components is caused
by the very strong electron–lattice interaction in the i-phase. In this paper, a study of the
momentum density of electrons in an Al–Li–Cu i-phase by means of positron annihilation
will be presented. Measurements of the two-dimensional angular correlation of positron
annihilation radiation (2D-ACAR) were made, and the three-dimensional (3D) electron–
positron momentum density was reconstructed by a direct Fourier transform method. The
purpose of this study is to establish a description of the electronic system of the i-phase in
terms of strong lattice–electron interaction and asphericity of the Fermi surface.

2. Experimental procedure

A single crystal of the Al–Li–Cu i-phase was grown at a rate of 0.5 mm per hour by the
Bridgman method. The detail is described elsewhere [17]. A specimen for the 2D-ACAR
experiment was cut out from the single i-phase block. The specimen was chemically etched
with dilute nitric acid. The specimen was 15 mm in diameter and 0.4 mm in thickness. The
composition of the phase was found by analysis to be Al59.3Li 9.3Cu11.4 (atomic percentages),
by means of inductively coupled plasma spectrometry.

The 3D momentum space of the i-phase, which has icosahedral symmetry, can be divided
into 60 independent spherical sections, each of which has five-, three-, and twofold axes at
its three corners. One of the fivefold axes was taken as the direction of the incident positron
beam. Then couples ofγ -rays of positron annihilation were emitted perpendicular to this
fivefold axis. The 2D-ACAR spectra were measured for seven projections by rotating the
sample around the fivefold axis in six-degree steps in order to reconstruct the 3D electron–
positron momentum density. This total rotation of 36◦ covers one of the independent solid
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angles of the momentum space. The experimental system is described in detail elsewhere
[18]. A total of about 6× 107 counts were accumulated for one ACAR spectrum.

3. Reconstruction

The 2D-ACAR spectrum

N(py, pz) =
∫
ρ(p) dpx (3.1)

is a one-dimensional projection of the momentum densityρ(p) onto planes perpendicular to
the direction of the emittedγ -rays, wherep is the annihilating electron–positron momentum.
For convenience, the coordinates on thex-, y-, and z-axes are given with respect to
the sample, and the normal vectors of the planes of the seven 2D-ACAR spectra are
written as (xi, yi, zi), i = 1, 2, . . . ,7. In the measurements, thez-axis was for all of
the 2D-ACAR spectra fixed along one of the fivefold axes of the Al–Li–Cu i-phase,
and the sample was rotated in thexy-plane in six-degree steps in every measurement.
The coordinates are determined as follows. Firstly, thez-axis is set to the direction
of the incident positron beam, which is along one of the fivefold axes. Secondly, the
x-axis is set so that another fivefold axis lies in thexz-plane. Then the directions of
the six independent fivefold vectors are(0, 0, 1), (2t, 0, t), (2t cos 2π/5, 2t sin 2π/5, t),
(2t cos 4π/5, 2t sin 4π/5, t), (2t cos 6π/5, 2t sin 6π/5, t), and (2t cos 8π/5, 2t sin 8π/5, t).
Here,t is 1/

√
5. The normal vectors,(xi, yi, zi), i = 1, 2, . . . ,7, of the planes of the seven

2D-ACAR spectra are(0, 1, 0), (− sinπ/30, cosπ/30, 0), (− sin 2π/30, cos 2π/30, 0),
(− sin 3π/30, cos 3π/30, 0), (− sin 4π/30, cos 4π/30, 0), (− sin 5π/30, cos 5π/30, 0), and
(− sin 6π/30, cos 6π/30, 0).

A direct Fourier transform method was used to reconstruct the 3D electron–positron
momentum densityρ(p) in the following way. The 3D Fourier transform ofρ(p), B(r),
is written as

B(r) = (2π)−3/2
∫ ∫ ∫

ρ(p) exp(−ip · r) dp. (3.2)

Conversely,ρ(p) is obtained fromB(r) with the aid of the inverse transform. Assuming
that the normal vector of a 2D-ACAR spectrum is chosen along thex-axis and setting
x = 0, it follows from equation (3.1) that

B(0, y, z) = (2π)−3/2
∫ ∫

N(py, pz) exp [−i(ypy + zpz)] dpy dpz. (3.3)

Thus, the 2D Fourier transform of a 2D-ACAR spectrum gives the values ofB(r) on the
yz-plane directly. By varying the direction of the normal vector of a 2D-ACAR spectrum,
the transformed functionB(r) is determined on many planes through its origin. A brief
outline of the direct Fourier transform method is as follows. The 2D-ACAR data measured
for seven directions are firstly Fourier transformed. This procedure gives seven sets of the
values ofB(r), on the seven corresponding planes. Secondly the sets of data give the
3D B(r) by interpolation onto a cubic grid of theB(r), and, finally, 3D inverse Fourier
transformation ofB(r) gives the full 3D momentum densityρ(p).

In the case of the i-phase, there is some difficulty in the calculation of the Fourier
transform. When the sample has a simple cubic lattice, such as a face-centred cubic
one, the Fourier transformation can easily be performed in real space. In the icosahedral
system, however, it is presumed thatρ(p) is a simple point-symmetric function in the
calculation. Although the Fourier transform of a point-symmetric 2D function becomes
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Figure 1. The 2D-ACAR spectra of the Al–Li–Cu icosahedral phase for seven projections. The
vector represents the normal vector for each of the planes. The angle denotes the deviation of
the normal vectors from they-axis.

a real function (see appendix A), a direct calculation of the Fourier transform should be
carried out in complex space. The computation of the Fourier transform in complex space
requires a great deal of time and memory. A method for calculating the Fourier transform
of a point-symmetric 2D function has been developed to facilitate carrying out the Fourier
transformation in real space. The details are described in appendix A. Before the 2D Fourier
transformation, each of the 2D-ACAR spectra was folded, with the originpy = pz = 0,
in order to obtain the point-symmetricN(py, pz). Secondly, each spectrum was Fourier
transformed using the method described in appendix A. Then the seven sets of data on the
planes inB(r) were obtained. Thirdly, a 3D mesh ofB(r) was determined so that the
interval of the neighbouring mesh points wasπ/25.4 mrad−1; this value was thus set to
be a little smaller than half of the period of the maximum momentum value (20 mrad) in
the measurement, for precise interpolation. The seven sets of data were arranged on the
3D mesh according to the icosahedral symmetry. In total, 60 sets of data for the planes
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Figure 2. The integrated momentum density along
(a) the fivefold axis and (b) the other axis perpendicular
to the fivefold axis of the 2D-ACAR spectrum indexed
by i = 7.

Figure 3. The Compton profiles along the (a) fivefold
and (b) twofold axes of the Al–Li–Cu icosahedral phase.
The dotted line represents the parabola of the electron
gas model. The broken line is the Compton profile of
the valence electron simulated on the basis of Daniel
and Vosko’s theory.

covered the 3D mesh ofB(r). The value at each mesh point was calculated by means of a
3D spline interpolation using the values on the 60 2DB(r) planes. Finally, the 3Dρ(p)
was obtained using the inverse 3D Fourier transformation described in appendix B.

4. Results and discussion

In the independent-particle model, the electron–positron momentum densityρ(p) can be
written as

ρ(p) =
occ.∑
n,k

∣∣∣∣∫
V

dr ψ+(r)ψn,k(r) exp(−ir · p)
∣∣∣∣2 (4.1)

whereψn,k is the wave function of an electron,n the band index,k the wave vector,
ψ+(r) the wave function of a thermalized positron (k = 0), V the crystal volume, and
the summation is taken over all of the occupied electron states. The 2D-ACAR spectrum
measured in the experiment is a onefold integral ofρ(p) as represented by equation (3.1),
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Figure 4. (a) The first derivatives of the integrated momentum densities along the fivefold
axis (dots) and the axis perpendicular to the fivefold axis (squares) for the 2D-ACAR spectrum
indexed byi = 7. (b) The first derivatives of the Compton profiles along the fivefold (dots) and
twofold axes (squares).

and the spectra measured for the Al–Li–Cu icosahedral single crystal are shown in figure 1.
Each spectrum has a peak atp = 0 contributed by the valence electrons. These spectra
do not show any apparent anisotropic feature in the momentum space. Thez-axes of the
various panels of the figure each correspond to one of the fivefold axes. The 2D-ACAR
spectra were integrated along thez-axes and they-axes respectively in order to compare the
Compton profiles measured previously for the same sample. Figure 2 shows the integrated
momentum densities along thez-axis and they-axis of the 2D-ACAR spectrum indexed
by i = 7. The momentum scale, milliradians (mrad), for the 2D-ACAR spectrum was
converted to atomic units (au) by multiplying by the factor ¯hc/1000e2 = 0.137. The
momentum density of the valence electrons is observed to be a parabolic curve from 0
au to about 0.8 au. The momentum density of the core electrons is observed as long
tails above about 2 au. In a simple free-electron model, its twofold-integrated momentum
density would lie on a parabolic curve. To evaluate the contribution of the core electrons,
the integrated 2D-ACAR spectra of all of the directions were averaged and fitted to a
theoretical momentum distribution (Compton profile) of the core electrons based on the
free-atom Hartree–Fock calculation [20]. The amount of the contribution was estimated to
be about 17% from−2.7 au to 2.7 au.

The Compton profile,J (pz), is written as

J (pz) =
∫ ∫ occ.∑

n,k

∣∣∣∣∫
V

dr ψn,k(r) exp(−ir · p)
∣∣∣∣2 dpx dpy. (4.2)
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The Compton profile is a twofold integral of the electron momentum density, which
essentially gives the same information as a 2D-ACAR spectrum, except that the Compton
profile does not include positron wave functions. Hence, the Compton profile is free from
the unknown positron wave functions. The Compton profiles [17] of the valence electrons
of the same sample are shown in figure 3.

Table 1. The momentum values (au) of the peak positions in the second derivatives of the
integrated electron–positron momentum densities of the 2D-ACAR spectrum indexed byi = 7
and those of the Compton profiles.

The value of
the momentum

The electron–positron momentum density‖ fivefold axis 0.83± 0.04
⊥ fivefold axis 0.82± 0.04

The Compton profiles Fivefold axis 0.87± 0.10
Twofold axis 0.87± 0.10

Figure 5. (a) The second derivatives of the integrated momentum densities along the fivefold
axis (dots) and the axis perpendicular to the fivefold axis (squares) for the 2D-ACAR spectrum
indexed byi = 7. (b) The second derivatives of the Compton profiles along the fivefold (dots)
and twofold axes (squares). Arrows denote the positions at which the maxima of the peaks
appear.
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To examine the momentum density around the Fermi surface and to compare the
electron–positron momentum density with the electron momentum density obtained from
the Compton profiles, the first and second derivatives of the integrated electron–positron
momentum densities and the Compton profiles were derived. The first derivatives are shown
in figure 4. Although the first derivatives of the integrated momentum densities are very
similar to those of the Compton profiles, the shapes of the bottoms of these are slightly
different from those of the Compton profiles. The second derivatives of those profiles are
shown in figure 5. The positions at which the maxima of the peaks appear in the second
derivatives of the Compton profiles have almost the same values of the Fermi radii as those
evaluated by fitting the Compton profiles to parabolas [17]. These momentum values are
summarized in table 1. The positions at which the maxima of the peaks appear in the
second derivatives of the integrated electron–positron momentum densities have slightly
smaller momentum values than those of the Compton profiles.

Table 2. The values of the momenta (au) of the peaks of the first derivatives of the electron–
positron momentum density and the Fermi radii of the Compton profiles. Here,t is 1/

√
5 and

u is (
√

5+ 1)/2. The values ofp5−avr andp2−avr are the average values of momenta along
the fivefold axes and twofold axes, respectively.

The electron–positron Fivefold axes [0, 0, 1] 0.780± 0.04
momentum density [2t, 0, t ] 0.810± 0.04

[2t cos 2π/5, 2t sin 2π/5, t ] 0.790± 0.04
[2t cos 4π/5, 2t sin 4π/5, t ] 0.795± 0.04
[2t cos 6π/5, 2t sin 6π/5, t ] 0.780± 0.04
[2t cos 8π/5, 2t sin 8π/5, t ] 0.785± 0.04

p5−avr 0.790± 0.04
Twofold axes [0, 1, 0] 0.788± 0.04

[cos 9π/10, sin 9π/10, 0] 0.788± 0.04
[cos 13π/10, sin 13π/10, 0] 0.791± 0.04
[cos 17π/10, sin 17π/10, 0] 0.790± 0.04
[cosπ/10, sinπ/10, 0] 0.798± 0.04
[−u, 0, 1] 0.812± 0.04
[u cos 14π/10, u sin 14π/10, 1] 0.784± 0.04
[u cos 18π/10, u sin 18π/10, 1] 0.790± 0.04
[u cos 2π/10, u sin 2π/10, 1] 0.805± 0.04
[u cos 6π/10, u sin 6π/10, 1] 0.810± 0.04
[1, 0, u] 0.810± 0.04
[cos 4π/10, sin 4π/10, u] 0.812± 0.04
[cos 8π/10, sin 8π/10, u] 0.810± 0.04
[cos 12π/10, sin 12π/10, u] 0.795± 0.04
[cos 16π/10, sin 16π/10, u] 0.815± 0.04

p2−avr 0.800± 0.04

The Compton profilesa Fivefold axis 0.862± 0.1
Twofold axis 0.861± 0.1

The electron gas model 0.835

a Adapted from reference [17].

The 3D electron–positron momentum density was reconstructed from the 2D-ACAR
spectra using the method described in section 3. On the assumption that the momentum
density of the core electrons is isotropic, the 3D momentum density of the core electrons
was also reconstructed independently, and was subtracted from the total 3D electron–
positron momentum density. The contribution of the core electrons atp = 0 au to the total
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Figure 6. (a) A cross-section of a plane perpendicular to one of the fivefold axes repres-
ented by thez-axis [001]. (b) A cross-section of a plane perpendicular to one of the twofold
axes represented by they-axis [010]. Here, theα- and β-axes represent twofold axes,
[−(√5+ 1)/2, 0, 1] and [1, 0, (

√
5+ 1)/2], respectively.

momentum density was evaluated to be 0.7%. The two cross-sections of the reconstructed
momentum densityρ(p) shown in figure 6 suggest that the momentum density is almost
spherical. To evaluate the asphericity of the Fermi surface and the Fermi radii in the
principal directions, the momentum densities and their first derivatives on all of the fivefold
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(a)

(b)

Figure 7. (a) The momentum density on the twofold axis represented by the vector
[−(√5+ 1)/2, 0, 1] and its first derivative. (b) The momentum density on the twofold axis
represented by the vector [1, 0, (

√
5+ 1)/2] and its first derivative.
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axes and all of the twofold axes were derived. The results are shown in figure 7. In a
simple free-electron model, its momentum density would show a step function according to
the Fermi–Dirac statistics. A smearing of the momentum density at the Fermi surface and
long tails are observed in all of the directions. Each of the first derivatives has a broad peak
around the Fermi surface. The values of momenta at which the peaks of the first derivatives
appear are listed in table 2. The average value almost coincides with those evaluated in
figure 5.

In the electron gas scheme, these values can be defined as Fermi radii. It was found
that there is a very small anisotropic feature in the Fermi surface of the electron–positron
momentum density. The value for an electron gas model is calculated on the assumption of
three electrons for Al, one electron for Li, and one electron for Cu. As seen in table 2, the
value of the Fermi radius of the model is slightly larger than those of the electron–positron
momentum densities and slightly smaller than those of the Compton profiles.

We have introduced the following parameter,δ:

δ = (p2−avr − p5−avr )/pavr (4.3)

in order to describe the deviation of the Fermi surface from sphericity. Here,p2−avr and
p5−avr are the average values of momenta at which the peaks of the first derivatives appear
along the twofold axes and fivefold axes, respectively, andpavr is the total average value.δ
was evaluated to be 1.3%. The resolution of the momentum in the measurement is 0.2 mrad,
which corresponds to 3.4% ofpavr . Although the values of the Fermi radii along the twofold
axes are slightly larger than those of the Fermi radii along the fivefold axes, the asphericity
of the Fermi surface is not explicit within the experimental resolution. The above results
are summarized as follows: (1) the value of the Fermi radius of the electron gas model
is slightly larger than those obtained from the electron–positron momentum densities and
slightly smaller than those obtained from the Compton profiles; (2) the asphericity of the
Fermi surface is not obvious within the experimental resolution.

Table 3. The values of the momenta (au) of the cross-sections at which the quasi-Brillouin-zone
boundaries cut the five-, three-, and twofold axes [17].

Fivefold axis Twofold axis Threefold axis

(221001) 0.867 0.737 0.789
(222100) 0.997 0.848 0.853

These results can be explained as follows. In the Compton profile experiment, it was
found that the simple electron gas model cannot explain the experimental profiles, and it
was suggested that the wave functions of the valence electrons at the Fermi level are far
from being simple plane waves. One of the reasons for this is that the strong electron–
lattice interaction occurs at the Fermi level in the i-phase. Taking the Umklapp process into
account, the momentum densityρ(p) in a normal crystal is written as

ρ(p) =
occ.∑
n,k

∑
G

∣∣An,k(G)∣∣2 δp−k,G (4.4)

where theAn,k(G) are the Fourier coefficients of the Bloch part of the wave functions.
It was pointed out that the values of the momenta of the quasi-Brillouin-zone boundaries
estimated from the strong x-ray diffraction peaks (221001) and (222100) [19] are very
close to that of the Fermi surface. The symmetries of the quasi-Brillouin-zone boundaries
corresponding to the (221001) and (222001) peaks are those of a triacontahedron and
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a hexacontahedron, respectively [17]. The values of the momenta of the cross-sections
at which the quasi-Brillouin-zone boundaries cut the five-, three-, and twofold axes are
summarized in table 3. These two boundaries form an approximately spherical boundary.
This spherical boundary can enhance the electron–lattice interaction because it is very close
to the Fermi surface. From the band calculations for the crystal that is an approximant for
the Al–Li–Cu i-phase, it is predicted that the strong electron–lattice interaction causes a
pseudo-gap at the Fermi energy [16]. Thus, the long tails that appeared in the 3D electron–
positron momentum density as well as those in the Compton profiles are attributable to a
large contribution from the higher-momentum components,G 6= 0, in equation (4.4), in the
Umklapp process, owing to the strong electron–lattice interaction. The above discussion
supports the existence of the pseudo-gap indirectly; this can explain various results from
the experiments regarding the electronic properties of the i-phase, such as the electrical
resistivity [12–14], specific heat [12–14], and magnetoresistance [13].

If the wave functions of the valence electrons were localized in real space, they would
appear to be extended in momentum space, and the momentum density would not be
explained in the electron gas scheme, whereas, in fact, this experimental result as well
as those of the Compton scattering experiment have at least the Fermi cut-off feature in
the momentum density, and do not indicate any signature of localization of the valence
electrons. These experimental results support the existence of a pseudo-gap at the Fermi
level. However, it is difficult to discuss the mobility of the valence electrons purely on the
basis of these experiments on the momentum density, The low electronic conductivity of
the i-phase may be explicable in two ways: as being caused by the large effective mass of
the valence electrons or as being caused by the small value of the density of states at the
Fermi level. Our experimental results support the latter explanation.

The difference between the results from the 2D-ACAR spectra and the Compton profiles
are explained as follows: the incident x-rays have equivalent cross-sections for all of the
electrons in a sample within the impulse approximation in the Compton scattering, whereas
the probability of the electron–positron annihilation depends on the kind of electron—such
as core electrons and valence electrons—because the positron wave functions do not have a
uniform amplitude in the sample. The positron wave functions have larger amplitude, i.e. the
electron–positron annihilation occurs at a higher rate, in regions where the ion density is
smaller or the electron density is smaller. This effect makes the values of the Fermi
radii smaller for the sample with vacancy-like defects. In the case of a sample free from
crystalline defects, the above effect is not observed. The positron lifetime spectra reported
for the Al–Li–Cu i-phase [21], however, reveal the existence of three lifetime components.
The intensity of the principal lifetime,τ2 = 205± 4 ps, which can be attributed to a dense
concentration of vacancy-like defects, is about 80%. It was reported on the basis of x-ray and
neutron diffraction experiments on the Al–Li–Cu crystalline approximant (the R phase) [22]
that the central site of the icosahedral clusters in the R phase is vacant. A band-structural
calculation [16] also reported that if the central site of the icosahedral clusters is not vacant,
the R phase does not stabilize energetically. In the positron lifetime study, it is suggested
that the Al–Li–Cu i-phase has the same icosahedral clusters as the crystalline phase, and
that the central sites of the icosahedral clusters possibly offer vacancy-like defects.

5. Conclusion

The 3D electron–positron momentum density of the Al–Li–Cu i-phase was found to be
almost isotropic. The parameterδ for the anisotropy is evaluated to be about 1.3± 3.4%,
which means that the asphericity of the Fermi surface is not obvious within the experimental
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resolution. The long tails that appeared in the 3D electron–positron momentum density
for valence electrons are attributed to the large contribution from the high-momentum
components generated by the Umklapp process due to the strong electron–lattice interaction.
The Fermi cut-off feature is clearly observed, which indicates that the valence electrons have
Bloch-electron-like characteristics for the most part. No signatures of localized states or
critical states of the valence electrons were observed. The values of the Fermi radii obtained
by means of positron annihilation are slightly smaller than those obtained by means of
Compton scattering. The large number of intrinsic defects in the Al–Li–Cu i-phase have
probably led to the difference between the results obtained from the positron annihilation
and the Compton scattering.
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Appendix A. The 2D Fourier transform of a point-symmetric function

A 2D point-symmetric functionf (x, y) can be expressed as

f (x, y) = f (−x,−y). (A.1)

This functionf (x, y) can be divided into two parts,c(x, y) and s(x, y). These functions
are related as follows:

f (x, y) = c(x, y)+ s(x, y) (A.2a)

c(x, y) = 1

2
[f (x, y)+ f (−x, y)] (A.2b)

s(x, y) = 1

2
[f (x, y)− f (−x, y)]. (A.2c)

The properties of the functionsc(x, y) ands(x, y) are expressed as

c(x, y) = c(±x,±y) (A.3a)

s(x, y) = −s(−x, y) = −s(x,−y) = s(−x,−y) (A.3b)

which are deduced from equation (A.1). The functionc(x, y) is even with respect to the
planesx = 0 andy = 0, and the functions(x, y) is odd with respect to the planesx = 0
andy = 0.

The Fourier transform off (x, y) is written as

F(px, py) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y)exp [−i(xpx + ypy)] dx dy. (A.4)

This function can also be divided into two parts,C(px, py) and S(px, py). The function
F(px, py) is expressed as

F(px, py) = C(px, py)− S(px, py). (A.5)

The functionsC(px, py) andS(px, py) are the Fourier transforms ofc(x, y) and s(x, y),
respectively. These Fourier transforms are written as

C(px, py) = 4
∫ ∞

0

∫ ∞
0
c(x, y) cos(xpx) cos(ypy) dx dy (A.6a)

S(px, py) = 4
∫ ∞

0

∫ ∞
0
s(x, y) sin(xpx) sin(ypy) dx dy. (A.6b)
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All of these functions are real. The imaginary part ofF(p) cancels out in the integral
because the integrand is odd; for example,

f (x, y) cos(xpx) sin(ypy) = −f (−x,−y) cos(−xpx) sin(−ypy). (A.7)

This scheme can be extended to higher-dimensional Fourier transforms.

Appendix B. The 3D Fourier transform of a point-symmetric function

A 3D point-symmetric functionf (x, y, z) can be expressed as

f (x, y, z) = f (−x,−y,−z). (B.1)

This functionf (x, y, z) can be divided into four parts,c(x, y, z), sx(x, y, z), sy(x, y, z),
andsz(x, y, z). These functions are related as follows:

f (r) = c(r)+ sx(r)+ sy(r)+ sz(r) r = (x, y, z) (B.2a)

c(x, y, z) = 1

4
[f (x, y, z)+ f (−x, y, z)+ f (x,−y, z)+ f (x, y,−z)] (B.2b)

sx(x, y, z) = 1

4
[f (x, y, z)+ f (−x, y, z)− f (x,−y, z)− f (x, y,−z)] (B.2c)

sy(x, y, z) = 1

4
[f (x, y, z)− f (−x, y, z)+ f (x,−y, z)− f (x, y,−z)] (B.2d)

sz(x, y, z) = 1

4
[f (x, y, z)− f (−x, y, z)− f (x,−y, z)+ f (x, y,−z)]. (B.2e)

The properties of the functionsc(r), sx(r), sy(r), andsz(r) are expressed as follows:

c(x, y, z) = c(±x,±y,±z) (B.3a)

sx(x, y, z) = sx(−x, y, z) = −sx(x,−y, z) = −sx(x, y,−z) (B.3b)

sy(x, y, z) = −sy(−x, y, z) = sy(x,−y, z) = −sy(x, y,−z) (B.3c)

sz(x, y, z) = −sz(−x, y, z) = −sz(x,−y, z) = sz(x, y,−z). (B.3d)

These expressions are deduced from equation (B.1). The functionssx(r), sy(r), andsz(r)
are even with respect to the planesx = 0, y = 0, andz = 0, respectively, and odd with
respect to the other two planes from amongx = 0, y = 0, andz = 0.

The Fourier transform off (r) is written as

F(p) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f (r) exp [−i(r · p)] dr. (B.4)

This function can be also divided into four parts,C(p), Sx(p), Sy(p), andSz(p). The
functionF(p) is expressed as

F(p) = C(p)− Sx(p)− Sy(p)− Sz(p). (B.5)

The functionsC(p), Sx(p), Sy(p), andSz(p) are the Fourier transforms ofc( r), sx( r),
sy( r), andsz( r), respectively. These Fourier transforms are written as

C(p) = 8
∫ ∞

0

∫ ∞
0

∫ ∞
0
c(r) cos(xpx) cos(ypy) cos(zpz) dx dy dz (B.6a)

Sx(p) = 8
∫ ∞

0

∫ ∞
0

∫ ∞
0
sx(r) cos(xpx) sin(ypy) sin(zpz) dx dy dz (B.6b)

Sy(p) = 8
∫ ∞

0

∫ ∞
0

∫ ∞
0
sy(r) sin(xpx) cos(ypy) sin(zpz) dx dy dz (B.6c)

Sz(p) = 8
∫ ∞

0

∫ ∞
0

∫ ∞
0
sz(r) sin(xpx) sin(ypy) cos(zpz) dx dy dz. (B.6d)



The density of electrons in i-Al–Li–Cu 11261

All of these functions are real. The imaginary part ofF(p) cancels out in the integration
for the same reason as in the case of section 5.
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